

COURSE OUTLINE

1. GENERAL					
SCHOOL	of Engineering				
DEPARTMENT	of Environmental Engineering				
LEVEL OF STUDIES	1 st Cycle, General Education				
COURSE CODE	TMC335	SEMESTER 2 nd Year,		'Year,	
				2 nd	Semester
COURSE TITLE	Solid Mechanics and Strength of Material				
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.			TEACHING HOURS PEF WEEK	R	ECTS CREDITS
			4		5
Please, add lines if necessary. Teaching methods and organization of					
COURSE TYPE	Packground	Conoral Kn	owlodgo		
Background, General Knowledge, Scientific Area, Skill Development	Dackground, General Knowledge				
PREREQUISITES:	Mathematics I & II (Trigonometric functions, vector				
	analysis, deferential and integral calculus)				
TEACHING & EXAMINATION	Greek				
LANGUAGE:					
COURSE OFFERED TO ERASMUS	NO				
STUDENTS:					
COURSE URL:	https://eclass.duth.gr/courses/TMC335/				

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

• Basic Knowledge of Solid Mechanics – Statics and Strength of Materials

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	

This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking. Students are expected to have:

- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- The student (as a non-specialist) knows the application possibilities and the limitations of the developed models.
- An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- The student can calculate or design simple practical constructions, taking into account the boundary conditions (e.g. allowable material properties and deformations, type and applying of loads).

3. COURSE CONTENT

Solid Mechanics - Statics

1. Introduction to Statics

- Mechanics Basic Concepts
- Scalar and Vectors (conventions for equations and diagrams, working with vectors)
- Newton' s Law

2. Statics of Particle and Rigid Bodies

- Coplanar Forces and Moments
- Forces in Space
- Equilibrium of a Particle
- Equilibrium of a Rigid Body in a Plane
- Forces and Moments in Space
- Equilibrium of a Rigid Body in a Space

3. Center of Mass and Centroids – Area Moments of Inertia

- Center of Mass (determine the center of gravity, center of mass vs. center of gravity)
- Centroids of Lines, Areas, and Volumes
- Rectangular and Polar Moments of Inertia
- Radius of Gyration
- Transfer of Axes
- Rotation of Axes

4. Structures

- Structural Elements
- Joints between Structural Elements
- Plane Trusses (simple trusses, truss connections and supports)
- Method of Joints (internal and external redundancy special conditions)
- Method of Sections (illustration of the method and additional considerations)
- Frames (pin joined frames, interconnected rigid bodies with multiforce members, force representation and free body diagram)

5. Beams – External and Internal Effects

- Type of Beams and Distributed Loads
- Force flow in a member

Diagrams for the normal force, shear force and bending moment (sign conventions for the N, V, and M diagrams) Deformation symbols for shear forces and bending moments **Strength of Materials** 6. Introduction • Normal Stress (σ) and Direct Strain (ϵ) Shear Stress (τ) and Shear Strain (γ) • Mechanical Properties of Materials (proportional limit, elastic limit, elastic and plastic ranges) Ductile and Brittle Material Behaviour Temperature Stresses Stress concentrations – Stress Concentration Factor Allowable Working Stress – Factor of Safety • 7. Tension and Compression • Internal Effects of Forces (axially loaded bar, normal stress, test specimen, normal strain, stress – strain curve) Allowable stress - Safety Factor 8. Shear Internal Effects of Forces (shear test, shear strain) Σύνθλιψη άντυγας οπών, Allowable Working Stress - Safety Factor • 9. Stress State - Strain State Sign Conventions • Rotate Axes • Elastic Materials - Hooke's Law Relation Between E, G and v Principal Stresses – Principal Planes • Maximum Shearing Stress Mohr's Circle of Stress Strains in an Inclined Direction **10.** Thin – Walled Pressure Vessels Internal and External Pressure (hoop or circumferential stress, longitudinal • stress, change in dimensions) Cylindrical Pressure Vessels **Spherical Pressure Vessels** • 11. Torsion • Simple Torsion Theory Polar Second Moment of Area, Section of Modulus • Torsional Rigidity • Torsion Of Hollow Shafts Torsion of Thin – Walled Tubes

- Principal Stresses
- Combined Torsion and Axial Loading

12. Bending

- Bending Theory - Pure Plane Bending
- Neutral Axis, Section of Modulus, Second Moment of Area ٠
- Bending Moments and Shearing Forces •
- Sign Conventions for Bending Moments and Shearing Forces •
- Maximum Normal Stresses Limitations •
- Shearing Force and Bending Moment Diagrams •

13. Columns – Stability

- Types of Columns
- Eccentric Loading
- Axial Loaded Compression Members
- Buckling Stability
- Critical Buckling Load
- Euler' s Theory Assumptions
- Yield Stress and Buckling Stress, Effective Length and Bracing •

Examples – Finite Element Analysis using Comsol Multiphysics, Abaqus and Ansys

+. LEARINING & TEACHING WETHODS - EVALUATION							
Face to Face							
Use of ICT in Teaching							
Activity	Workload/semester						
Lectures	45						
Bibliographic Research &	41						
Analysis							
Field Exercise	20						
Individual Project	44						
Total	150						
Broblom Solving	(M)						
Final Written Assignment: 65%							
	Face to Face Use of ICT in Teaching Activity Lectures Bibliographic Research & Analysis Field Exercise Individual Project Total Problem Solving Final Written As						

5. SUGGESTED BIBLIOGRAPHY

- "Statics and Strength of Materials (Theory Methodology Solved Problems ", A. Polyzakis
- 2. "Statics and Strength of Materials", P. Vouthounis
- 3. "Strength of Materials", Th. Kermanidis
- 4. "Engineering Mechanics of Deformable Solids I", P. Vouthounis
- 5. "Strength of Materials", E. E. Gdoutos
- 6. "Strength of Materials", E. Papamichos and N. Ch. Charalampakis
- 7. "Statics", E. E. Gdoutos
- 8. "Strength of Materials: An Introduction to the Analysis of Stress and Strain", J. Case and A. H. Chilver
- **9.** "Mechanics of Materials (2nd ed.)", F. Beer and E. R Johnston, Jr.
- 10. "Engineering Mechanics: Statics (5th ed.)", J. L. Meriam and Kraige L. G
- 11. "Statics and Strength of Materials: Foundations for Structural Design ", B. Onouye
- "Vector Mechanics for Engineers: Statics and Dynamics (9th ed.)", F. P. Beer, E. R. Johnston, Jr, D. F. Mazurek, P. J. Cornwell and E. R. Eisenberg
- **13.** "Strength of Materials (2nd ed.)", R. Subramanian
- 14. "Statics and Strength of Materials: Foundations for Structural Design (7th ed.)", H.
 Morrow and R. Kokernak
- **15.** "Mechanics of Materials (10th ed.)", R.C. Hibbeler
- 16. "Statics and Strength of Materials", R.C. Hibbeler
- 17. "Strength of Materials (7th ed.)", W. Nash and M. C. Potter
- 18. "Applied Strength of Materials (6th ed.)", R. L. Mott and J. A. Untener
- **19.** " Applied Strength of Materials for Engineering Technology (20th ed.)", B. Dupen

ANNEX OF THE COURSE OUTLINE

Alternative ways of examining a course in emergency situations

Teacher (full name):	Panagiotis J. Charitidis
Contact details:	pchariti@env.duth.gr
Supervisors: (1)	Dimoudi Argiro (adimoudi@env.duth.gr), Zoras Stamatios (szoras@env.duth.gr)
Evaluation methods: (2)	There is a final written examination for evaluation of the students.
Implementation Instructions: (3)	

(1) Please write YES or NO

(2) Note down the evaluation methods used by the teacher, e.g.

written assignment or/and exercises

written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(3) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

There should be an attached list with the Student Registration Numbers only of students eligible to participate in the examination.

